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This paper is concerned with protection of the boundary surface from incident
seismic waves incoming to the boundary from below. The main purpose is to study
the distribution of the amplitude of oscillations over the boundary with variance
of its shape. It is clear that the total incoming kinetic energy along the boundary
is the same as the one in the incident wave. The problem of how to suppress the
amplitude on certain boundary intervals at the expense of its amplification
elsewhere is posed.
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1. INTRODUCTION

Many acoustical problems are connected with the need to provide the desired
structure of the wave fields in some domains. In noise control, the main efforts
aim at optimal reduction of the sound field intensity. Various techniques are
applied for this purpose based, from the theoretical point of view, upon the ideas
related to Helmholtz resonators (see reference [1]). In architectural acoustics there
is a need to minimize the amplitude of the sound wave reflected from the walls
of the concert hall. This purpose can be achieved by optimization of the hall shape
in total, or by using a special cover for the walls.

Another research direction is related to the following question: is there any
efficient way to affect the structure of the reflected acoustic wave by the use of an
optimal local structure of the boundary surface itself ? In this connection some new
methods in the design of the scattered wave should be mentioned as a considerable
advance in acoustics of concert halls. Thus, Schroeder [2] proposed a special
stepped form of the cover which provides the absence of the specular reflection
for the case of normal incidence. Recently, this approach has been adapted for
oblique incidence by Feldman [3].

The aim of the present work is to investigate a contiguous problem: can the
pressure on the boundary which is subjected to an incident wave be reduced by
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any special choice of the shape of the boundary itself ? In other words, can the
boundary protect itself from the scattered wave? Such a formulation is urgent for
many fields. This is of special interest for seismology, where a long-wave structure
of the seismic fields generated by earthquakes involves additional obstacles when
arranging a protection method.

It is clear, from the physical point of view, that the incoming energy cannot be
dissipated across a boundary surface. Thus, the total kinetic energy over the
boundary keeps the same value with arbitrary variation of the shape of the
boundary surface. Hence, artificial amplification of the amplitude (and the local
wave energy as well) along some boundary regions may suppress these along some
others. Below it is shown how to place under these ideas a quantitative
mathematical foundation. The results obtained are not very optimistic but worthy
of detailed consideration. It is proved, for a number of specific geometries, that
the amplitude of the free-surface vibration tends to a trivial value with decreasing
frequency. At the same time, a unique regime is discovered, with the period of
corrugations being near the wavelength, that permits considerable suppression
of the amplitude over some small boundary domains.

2. PROBLEM FORMULATION AND A SIMPLE SOLUTION

Let the plane wave full upon a curved boundary l as shown in Figure 1

8(in)(x, y)= e−ikx. (1)

The boundary of the lower half-plane is assumed to be acoustically hard, so the
boundary condition is

18

1n
=0, (x, y)$ l, (2)

where the total wave field is a sum of incident and diffracted waves

8=8(in) +8(d), D8+ k28=0. (3)

Figure 1. Normal incidence of a plane acoustic wave upon a curved boundary l.
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Figure 2. Normal incidence of a plane acoustic wave upon periodic rectangular corrugations.

Here D is the Laplace operator, and k is the wave number: k=v/c. Besides, it
is assumed that the wave process is harmonic with respect to time:

8̃(x, y, t)=8(x, y) exp(−ivt). (4)

The physical essence of the function 8(x, y) in acoustics is a wave pressure.
Another treatment should be applied in seismology where SH shear waves
determine 8(x, y) as an amplitude of the anti-plane vibrational component
uz (x, y).

The following problem, that is very important in practice, may be posed here:
minimize the boundary value of 8(x, y), (x, y)$ l selecting an appropriate shape
of the free surface x= x(y). From the physical point of view, it is rather unreal
to expect any uniform decreasing of the boundary pressure (compared with a case
of the plane boundary). Thus, in practice, the problem formulation implies optimal
control of the pressure along different parts of the free surface, since its decreasing
on the top may appear to be accompanied by an amplification over the ‘‘lowland’’
(or visa versa). Note that the ‘‘trivial’’ value of the amplitude on the plane
boundary is well known to be constant and equal to A0 0 2.

A simple solution can be constructed for periodic rectangular corrugations (see
Figure 2). Due to the periodicity, the consideration may be restricted by a single
layer only. If the period of the profile a is small when compared with the
wavelength l=2p/k (so-called ‘‘one-mode’’ case), then in the low-frequency
‘‘tube’’ approximation (hq a) the wave field remains plane all over the region and
can be represented as follows

81 = e−ikx +R eikx, 0E xQa, (5)

82 =B cos kx+D sin kx, −hE xE 0. (6)

The three boundary conditions, to define the three unknown constants R, B, D,
are the following ones.
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Acoustically hard wall yields

182

1x
=0, x=−h. (7)

The continuity of the pressure inside the layer implies

81 =82, x=0. (8)

Lastly, mass conservation gives (see reference [1])

a
181

1x
= b

182

1x
, x=0. (9)

As a result, the following representation for the wave amplitude at the top and
the bottom can be derived as

A1 =81=x=0 =
2a

a− bi tan kh
, A2 =82=x=−h =

2a
a cos kh− bi sin kh

.

(10, 11)

An interesting regime is obtained when kh:p/20 h:l/4 that involves

=A1=:0, =A2=:2
a
b
. (12)

Thus, in this case, protection of the stepped boundary at its lower level can be
arranged efficiently.

Therefore, if there is a possibility for a step depth to be of the same order as
the wavelength then, accepting h0 l/4, the self-protected boundary can be
constructed as a stepped profile. Unfortunately this case is not so attractive for
the long-wave practice because its cuttings are too deep.

3. SEMI-ANALYTICAL SOLUTION FOR THE STEPPED PROFILE
OF ARBITRARY SIZE

The simplest geometry should be studied in detail, to recognize better if any
other corrugations suitable for real practice exist. Rectangular corrugations were
thoroughly investigated in the 1950s, for the most part by Russian researchers
Deryugin and Myakishev who reduced the problem to an infinite set of linear
algebraic equations (for a brief survey, see reference [4]).

If conditions of the one-mode ‘‘tube’’ approximation are broken, then the
problem needs a refined treatment, and reduction to an integral equation in the
present work is prepared as a more efficient and modern method. Complete
representation of the solution is given as

81(x, y)= e−ikx +R eikx + s
a

n=1

Bn e−qnx cos 02pn
y
a1, xe 0, (13)
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82(x, y)=C0 cos k(x+ h)+ s
a

n=1

Cn cosh [rn (x+ h)] cos 02pn
y
b1, −hE xE 0,

(14)

qn =X02pn
a 1

2

− k2, rn =X02pn
b 1

2

− k2. (15)

Formula (14) automatically satisfies the boundary conditions on the acoustically
hard boundary: 182/1x=0, x=−h, =y=E b/2; 182/1y=0, y=2b/2,
−hE xE 0.

Introducing the new unknown function g(y) as

181

1x bx=0

=6(182/1x)=x=0 = g(y),
0,

=y=E b/2,
b/2E =y=E a/2,

(16)

one can express the constants R, Bn , Cn in terms of the function g(y). Then the
continuity condition (8) leads to the integral equation g(y):

g
b/2

−b/2

K(h− y)g(h) dh=2, =y=E b/2, (17)

K(y)=−
cot (kh)

bk
−

1
iak

+
2
a

s
a

n=1

cos (2pny/a)
qn

,

+
2
b

s
a

n=1

coth (rnh)
rn

cos (2pny/b). (18)

Obviously, the kernel K(y) possesses a logarithmic singularity at y:0, due to
the following identity [5]

s
a

n=1

cos (ny)
n

=−ln b2 sin
y
2 b. (19)

So any traditional numerical treatment, say the Boundary Elements Technique,
may be applied to solve equations (17) and (18). After that, the boundary values
of 8(x, y) are directly calculated as follows

A1 =81=x=0 =2+
1
a g

b/2

−b/2

g(t)6 1
ki

−2 s
a

n=1

cos [2pn(t− y)/a]
qn 7 dt,

b
2
E =y=E a

2
,

(20)
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A2 =82=x=−h =
1
b g

b/2

−b/2

g(t)62 s
a

n=1

cos [2pn(t− y)/b]
rn sinh (rnh)

−
1

k sin kh7 dt, =y=E b
2
.

(21)

In the case when ak�1, some analytical treatment is possible. For this
long-wave regime the kernel K(y) in equation (18) can be simplified as follows

K(y)=K0(y)−
cot (kh)

bk
−

1
iak

, K0(y)1−
1
p $ln b2 sin

py
a b+ln b2 sin

py
b b%.

(22)

Let the function v(x) denote a solution of the integral equation

g
b/2

−b/2

K0(h− y)v(h) dh=1, =y=E b/2, (23)

that is evidently independent upon the wave number k. Then the solution of
equation (17) is

g(y)= v(y)62+V$cot (kh)
bk

+
1

iak%7, (24)

where

G=g
b/2

−b/2

g(y) dy, V=g
b/2

−b/2

v(y) dy. (25)

Equation (24) involves the following identity regarding the quantities G and V:

G=
2V

1−$cot (kh)
bk

+
1

iak%V
, (26)

with the value of V being independent of k.
Formulas (20) and (21) with ak:0 give

A1 0 2+
G
iak

=2+
2V/iak

1−$cot (kh)
bk

+
1

iak%V
:2, (27)

A2 0−
G

bk sin (kh)
=−

2V/bk sin (kh)

1−$cot (kh)
bk

+
1

iak%V
:2. (28)
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Hence, no protection is possible using the geometry of fixed sizes when k:0, that
is quite natural from the physical point of view. Generally this property is proved
in the next section.

At the same time, a direct numerical technique was developed to solve the
integral equation (17) for arbitrary combinations of geometrical and physical
parameters. Omiting routine details, it is noted that it is based on the Boundary
Element Method, that guarantee stable calculations provided integration of the
logarithmic singularity of the kernel is performed explicitly. We discovered an
exceptional regime ka0 2p (with kh�1) which corresponds to an extreme value
of ka in the one-mode process. In a small vicinity of this exclusive combination
of the parameters (that is equivalent to a0 l), the vibrational amplitude 8(x, y),
(x, y)$ l can differ considerably from the trivial value A0 =2, into various degrees
depending on the location of a point on the boundary. Figure 3 demonstrates a
geometry where the boundary amplitude over the top is two times more intensive
when compared with the case of a plane boundary surface (i.e., =A2=0 4). Thus,
the amplitude increases by 20 lg 21 6 dB. At the same time, on the lowlands there
is a considerable suppression of the amplitudes, and Figure 3 reflects the frequency
dependence of the amplitude only at the central point. As follows from the graph,
the level of the ‘‘gain’’ becomes considerable only in a very restricted frequency
interval where =l/a−1=Q 0·05. Thus, the results are not so optimistic for practice.

Note that in the typical situation in seismic practice, when the period T=1 s,
c=1000 m/s, l=1000 m, the value h/l=0·02 corresponds to the step depth
h=20 m. It is interesting to note also that increasing the earthquake magnitude
by a unit value is equivalent to the boundary amplitude growth by
10 lg (101·5)=15 dB ([6], section 2.2).

Figure 3. Spectral dependence of the gain =A1/A0=, A0 =2 at the point with x=0, y= b: b=0·5a;
h/a=0·02.
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4. BOUNDARY INTEGRAL EQUATION FOR ARBITRARY CONTOUR l

For arbitrary acoustically hard boundary l given by the following equation (see
Figure 1)

18

1n bl =0, l: x= x(y), −aQ yQa, (29)

the scattering problem can be reduced, with the use of Kirchhoff formula, to an
integral equation over the boundary l [1]

8(x, y)−2 gl

8(j, h)
1F

1n
dl=2 e−ikx, (x, y)$ l,

F=
i
4

H(1)
0 (kr), r=z(j− x)2 + (h− y)2, (30)

regarding the value of the total wave potential 8(x, y) on the boundary contour.
It is assumed that the function x(y) is bounded: =x(y)=EB. Function H(1)

0 in
equation (30) denotes the Hankel function of the first kind: n̄(j, h) is the unit
normal-vector at the point (j, h)$ l directed into the medium.

In the case of the plane boundary, equation (30) directly yields the well
known boundary value 8(x, y)0 2. Indeed if j= x0 const, n̄= {1, 0}, then
1F/1n=(1F/1r)(1r/1n)= (1F/1r)(1r/1j)= (1F/1r)[(j− x)/r]=0, so 8(x, y) =
2 exp(−ikx), (x, y)$ l that is twice as intensive when compared with the incident
wave.

For arbitrary contour l it is clear, from the physical point of view, that in the
low-frequency regime (k=x(y)=�1) the last property remains valid. More exactly,
the free term on the left side of equation (30) can considerably deviate from the
trivial value 8(x, y)=2 exp(−ikx) if and only if the integral in (30) becomes
significant when the function 8(j, h)=2 exp(−ikj) is substituted into the integral
(30). The result of the substitution can be estimated as follows. Let the point (x, y)
belong to the contour l, and let l1 denote a straight line crossing this point and
being parallel to the ground horizon x=0. Then the Green formula involves [1]

0gl

−gl1
1 e−ikj 1F

1n
dl=0gg

D+

−gg
D−

1$e−ikjDF+
1(e−ikj)

1j

1F

1j% dj dh, (31)

where D+ (D−) is a union of the set of domains bounded by l1 from above (below)
and by l from below (above). The Green function F(x, y, j, h) given by equation
(30) satisfies the Helmholtz equation (3) and the integral over l1 in equation (31)
has been previously shown to vanish, thus the last formula involves

gl

e−ikj 1F

1n
dl=

k2

4 0gg
D+

−gg
D−

1 e−ikj$H(1)
1 (kr)

j− x
r

−iH(1)
0 (kr)% dj dh. (32)
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By applying integration by parts to the first term inside the last brackets, with
respect to the j-variable, one comes to the following representation

gl

e−ikj 1F

1n
dl =

k
4 g

a

−a

�H(1)
0 {kz[j(h)− x]2 + (h− y)2}

−e−ikxH(1)
0 (k=h− y=)� dh0 i

k2

4 g
a

−a

[x− j(h)]H(1)
0 (k=h− y=) dh, k:0, (33)

where the functions j= j(h), =h=Qa and x= x(y), =y=Qa describe the same
boundary contour l.

Equation (30) may be rewritten as a functional equation

(I−K)8= f, f=2 e−ikx, (34)

with a small operator K. The Neumann series for its solution

8=(I−K)−1f= f+Kf+K 2f+· · · (35)

involves the first-order approximation as

8=l 1 f+Kf=2 e−ikx +ik2 g
a

−a

[x− j(h)]H(1)
0 (k=h− y=) dh

=2 e−ikx +2ikx−ik2 g
a

−a

j(h)H(1)
0 (k=h− y=) dh. (36)

The last representation permits estimation of the boundary pressure for small k
(kx�1) as

A= =8(x, y)=l =2+O(k2), k:0, (x, y)$ l. (37)

At the same time, numerical calculations, carried out following equation (36),
show that the last formula is a good approximation not only for extremely small
kx.

The main general conclusion which may be drawn from the preceding
consideration is that in the long-wave regime suppression of the boundary,
pressure cannot be provided by any structure of fixed geometry. Thus,
self-protection is attainable only when the period of corrugations is coupled with
the wave number k. This question is worthy of more detailed discussions.

Obviously, contribution of the integration over any finite part of the infinite
interval into the integral in equation (36) is small for small kx. Hence, variation
of the boundary shape within any interval of a finite length does not influence the
vibrational amplitude 8=l (when kx�1). Considerable contribution into the
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integral (36) may be provided only by distant parts of the boundary. For large
h, the function H(1)

0 possesses the asymptotics

H(1)
0 (k=h− y=)0X 2

pk=h− y= e
i(k=h− y=− p/4). (38)

Its real and imaginary parts are sign-alternating functions with the same
wavelength l=2p/k. Therefore, if the boundary contour j= j(h) is chosen as a
periodic function with a period L close to l: L0 l, then one comes to an integral
of some functions of almost constant signs. Such an integral may become
arbitrarily large, which confirms the results of the previous section obtained for
a particular structure. So any periodic boundary contour l with the period around
the wavelength may provide self-protection.

In practice, a finite number N of the boundary ‘‘humps and cavities’’ of various
shapes may be sufficient for this purpose. The greater N, the greater the
suppression of the surface stress near l0L, but with less gain out of a small
neighbourhood of the exceptional value: =l/L−1=Q d�1. The optimal choice of
N is a few tens that provides a good suppression and sufficiently wide range of
the frequency parameter where the gain is considerably perceptible. An example
of such a type of structure is shown in Figure 4. To widen the spectral interval
of the gain, a choice of a finite number of hills and cavities of quasi-constant

Figure 4. Spectral dependence of the gain for a finite number N=30 of cosine corrugations at
the point with x=0, y= h: x= h cos (xy); h/L=0·03; L= y0 =2p/x, the period of corrugations.
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Figure 5. Distribution of the gain along the first period for a finite number of quasi-periodic cosine
corrugations:

x=cos z(ky)2 + z2; h/L=0·03; L=2p/k; y0 =z(2p+ z)2 − z2/k;

——, N=30, z=5·65; –––, N=40, z=7·54.

lengths seems to be appropriate too, as in filtering of surface acoustic waves [7].
A respective example is reflected in Figure 5.

5. BOUNDARY INTEGRAL EQUATION FOR ARBITRARY
PERIODIC CONTOUR l

To arrange efficient calculations for any boundary among the predicted class
of contours l which can provide the self-protection property, one needs to
construct a numerical algorithm to solve equation (30). For arbitrary contours this
problem is not so simple, because it takes too large a finite part of l to be accounted
for and too many nodes on a grid. However, the results reflected in Figures 4 and
5 have been obtained with the use of a direct numerical treatment on a PC
Pentium-133. The aim of the present section is to demonstrate how the main
equation (30) can be reduced to a single-period interval when the boundary surface
is strictly periodic. In this case, calculations can be performed without any
obstacle.
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Let l0 denote a single interval of periodicity with (x, y)$ l0, and a be a period
of the corrugations. Then

gl

8
1H(1)

0

1n
dl=−k gl

8H(1)
1 (kr)

1r
1n

dl=−k gl

8H(1)
1 (kr)(grad r · n̄) dl

=−k s
a

m=−a gl0

8H(1)
1 (krm )

(r̄m · n̄)
rm

dl, (39)

where

r̄m = {j− x, h+ am− y}, rm =z(j− x)2 + (h+ am− y)2. (40)

Hence, one comes to the following integral equation over the single-period interval
l0:

8(x, y)+gl0

8(j, h)K1(j, h, x, y) dl=2 e−ikx, (x, y)$ l0, (41)

K1(j, h, x, y)=
ik
2

s
a

m=−a
H(1)

1 (krm )
(r̄m · n̄)

rm
. (42)

Convergence of the last series is very slow. However it can be accelerated by
extracting the main asymptotic term at =m=:a which yields the series of the type

s
a

m=1

exp(2iakm)/zm .

It can be evaluated for small k by the following method. The Hurwitz formula
[8] for generalized zeta-function

z(s, a)=
2G(1− s)
(2p)1− s $sin ps

2
s
a

m=1

cos (2pma)
m1− s

+ cos
ps
2

s
a

m=1

sin (2pma)
m1− s % (43)

is equivalent to the pair of non-oscillating series

s
a

m=1

cos (mx)
mb = xb−1G(1− b) sin

pb

2
+ s

a

m=0

(−1)m

(2m)!
z(b−2m)x2m, (44a)
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s
a

m=1

sin (mx)
mb = xb−1G(1− b) cos

pb

2
+ s

a

m=1

(−1)m+1

(2m−1)!
z(b−2m+1)x2m−1,

(44b)

which involves an evident efficient expression valid for small x and b=0·5.

6. CONCLUSIONS

From the previous consideration, one can draw the following conclusions.
The low-frequency influence of the incident wave on the boundary of arbitrary

fixed geometry is the same as for the case of a plane boundary surface. It means
=8=l:2 with k:0.

In order to protect the boundary surface from the incident wave, its shape has
to be almost-periodic, with the period being round the wavelength.

The periodic boundaries of various shapes are acceptable for this purpose. The
form of different surfaces may involve different gains, but qualitatively, arbitrary
almost-periodic function is suitable to provide protection.

For such boundaries, a certain part of its period interval is subjected to more
intensive vibrations when compared with the trivial value A0 =2. However, the
gain along remaining intervals is always higher than the loss value.

To reduce the vibrational amplitude at a boundary domain, it is sufficient to
take a finite number of ‘‘hills’’. The more periods L are taken, the higher is the
gain in a small frequency interval =L/l−1=Q d, but the more narrow.

Unfortunately considerable suppression of the surface oscillations is possible in
very restricted frequency interval only. So the problem needs further
investigations, in order to make results more attractive for practice.
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